Laufende Promotionsarbeiten

Laufende Promotionsarbeiten


Ein datenzentriertes Qualitätsframework für Ontologien

Die Nutzung elektronischer ontologischer Wissensrepräsentationen reicht bis in die 90er Jahre zurück. Doch obwohl diese Technologie vergleichsweise alt ist, ist ihr Einsatz heute noch ungebrochen mit Anwendungsszenarien nicht nur zum Austausch von Informationen, sondern auch bei der Herleitung neuen Wissens durch automatisierte Schlussfolgerungen oder der Verarbeitung natürlicher Sprache. Da die Nutzung von Ontologien weiter steigt - wie kann man die Qualität und Korrektheit solcher Artefakte sicherstellen?
Die Verwendung objektiver, quantifizierbarer Metriken liefert valide Messpunkte. Und in der Vergangenheit wurde eine enorme Menge an Metriken vorgeschlagen, die - unter anderem - die Graphen- und Schemaattribute, Annotationen, Beziehungen oder Instanzen bewerten. Doch oft wird ihr Einfluss auf die tatsächliche Qualität nicht umfassend erforscht. Wie und in welcher Art von Zusammensetzung beeinflussen die von Tartir et. al. im OntoQA-Framework vorgeschlagenen Metriken die Verständlichkeit einer Ontologie? Welchen Einfluss haben die von Gangemi et. al. Vorgeschlagenen Graph-Metriken auf die Wiederverwendbarkeit einer Ontologie? Der Einfluss bestimmter Metriken auf konkrete Qualitätsmerkmale wird oft nicht beschrieben und wenn doch, dann nicht in einem empirisch fundierten Ansatz validiert. Zudem bleiben die meisten Metriken eher isoliert. Es ist oft nicht bekannt, wie die Metriken miteinander korrelieren. Diese Unzulänglichkeiten machen die Verwendung von Ontologie-Metriken willkürlich - besonders unerfahrene Modellierer stehen vor der Herausforderung, die richtigen Metriken für die richtigen Ziele auszuwählen. Auch wenn die Ontologie-Metriken objektiv berechnet werden, bleibt die Interpretation subjektiv.
Validierte Messungen der Ontologiequalität können diesen Modellierern helfen, ontologische Modelle auf der Grundlage ihres angestrebten Nutzungsszenarios zu entwickeln. Eine Übersetzung der abstrakten Messungen in hochwertige Qualitätsdimensionen wie u.a. "Vollständigkeit", "Klarheit" oder "Anpassungsfähigkeit" hilft, die eigene Arbeit in einen breiteren Kontext einzuordnen. Dies gilt insbesondere dann, wenn diese Metriken in einem Repository zur Verfügung gestellt werden, das den Vergleich zwischen dem eigenen Werk und verschiedenen anderen Ontologien ermöglicht. Darüber hinaus können auf der Grundlage der bereitgestellten Qualitätsberechnungen mögliche Verbesserungen für ein bestimmtes Qualitätsziel angegeben werden, wobei die Artefakte hervorgehoben werden, die für jede Qualitätsdimension die einflussreichsten Faktoren sind. Tatsächlich kann dies nicht nur zu besseren Ontologien, sondern langfristig auch zu besser ausgebildetem Modellierungspersonal führen.

Das Ziel dieser Doktorarbeit ist es, eine Verbindung zwischen umfassenden Qualitätsmessungen wie "Verständlichkeit" oder "Vollständigkeit" und den in der Literatur vorgeschlagenen Qualitätsmetriken herzustellen und zu validieren. Mit Hilfe eines datenzentrierten Forschungsdesigns sollen Qualitätsstufen und Verbesserungsvorschläge identifiziert werden. Dies hat das Potential, besonders unerfahrene Ontologie-Ingenieure bei der Beurteilung ihrer Arbeit und der Erstellung besserer Ontologien zu unterstützen. Die Neuheit dieser Forschung liegt in der Datenzentriertheit ihres Designs. Anhand einer Sammlung großer Mengen evolutionärer Ontologie-Metriken sollen statistisch relevante Korrelationen gefunden werden. Dies ermöglicht die Validierung bereits vorgeschlagener und die Identifizierung neuer Qualitätsmessungen.


Context-sensitive Assistance Systems for Smart Self-Management

Die digitale Durchdringung des Alltags bietet große Potenziale und führt gleichzeitig zu neuen Herausforderungen. In der gegenwärtigen Arbeitswelt können insbesondere eine Arbeitsverdichtung, sowie Entgrenzung von Arbeits- und Privatleben beobachtet werden. Viele Arbeitnehmer stehen oft unter Zeitdruck. Häufige Unterbrechungen und Multitasking erschweren zusätzlich die Planung und Fertigstellung von Aufgaben, sowohl beruflich als auch privat. Der entstehende Stress und fehlende Erholung sind in allen Lebensbereichen kritische Faktoren. Somit kommt dem Selbstmanagement eine steigende Bedeutung zu, nicht nur im Hinblick auf die Produktivität, sondern insbesondere auch in Bezug auf die Erhaltung der Motivation, des Wohlbefindens und der Gesundheit des Einzelnen. Einen individuell passenden, reibungslosen Workflow zu entwickeln erfordert oftmals zusätzlichen Aufwand, kann aber insbesondere langfristig von großem Vorteil sein. Bisherige Werkzeuge, wie beispielsweise digitale Terminkalender oder To-do Listen, bieten nur eine rudimentäre Unterstützung, da sie meist statisch sind und eine permanente manuelle Anpassung benötigen. Zudem werden Entwicklungen im Bereich der Sensoren und Smart Devices bisher kaum berücksichtigt. Mit ihnen wird es möglich, Daten über den Nutzer und seine Umgebung zu erfassen. Die so gewonnenen Informationen, z.B. über den Ort des Nutzers, seine Bewegung oder biologische Werte, sowie Schlussfolgerungen, beispielsweise über die aktuelle Situation, können in Unterstützungsansätze für das Selbstmanagement einfließen.

Ziel der Forschungsarbeiten ist es, ein Konzept für ein innovatives Assistenzsystem zum kontextsensitiven Selbst-Management zu entwickeln und zu erproben. Hierbei soll insbesondere das Potenzial von Sensoren und Smart Devices zur Erfassung benötigter Daten und zur Umsetzung einer ubiquitär nutzbaren Vorschlagsfunktion untersucht werden. Die Ergebnisse sollen dazu verwendet werden, ein personalisiertes, situationsbezogenes und stresssensitives Assistenzsystem zum Selbst-Management zu entwickeln.


Methodische Beiträge zur Geschäftsmodell-Transformation in digitalen Business Ökosystemen unter Berücksichtigung der maritimen Domäne

Während Plattformen und ihre damit einhergehenden Geschäftsmodelle in den USA Industrien revolutioniert haben und heute zu den am besten bewerteten Unternehmen weltweit gehören, ist der Marktanteil von europäischen Plattformen gering. Um hier an die Erfolge aus dem amerikanischen Markt anknüpfen zu können, sind verschiedene Methoden nötig um digitale Geschäftsmodelle im europäischen Raum zu ermöglichen und anzupassen. Ökosysteme hier sollen nicht dem klassischen “The-Winner-Takes-It-All” Prinzip unterliegen, sondern die Kooperation zwischen verschiedensten Akteuren ermöglichen. Meine Forschungsarbeit in diesem Bereich konzentriert sich hauptsächlich auf die maritime Domäne: Die Blue Economy ist ein noch relativ unerschlossener Wachstumsmarkt mit Potential. Man denke dabei beispielsweise an den Aufbau von Offshore-Windkraft, die Nutzung von Seegraswiesen, Aquakulturen, der Seefahrt oder der Fischerei. Im Zusammenhang mit diesen Ideen muss allerdings auch die Munitionserkennung im Wasser erwähnt werden: Alte Weltkriegsmunition verschmutzt noch immer unsere Meere und stellt aufgrund von Erosionen der Munitionshüllen eine konkrete Bedrohung für die Umwelt und Menschen dar. Neue Technologien wie Unterwasserfahrzeuge oder Sensordaten können dabei helfen, diese Herausforderungen anzugehen.

Ziel dieser Forschungsarbeit ist es daher, in verschiedenen Beiträgen zu zeigen, wie sich Geschäftsmodelle in der maritimen Domäne transformieren lassen. Dabei werden zunächst klassische Plattformgetriebene Geschäftsmodelle analysiert. Die dort gewonnen Erkenntnisse werden Praxispartnern zugänglich gemacht. Aufbauend auf den entstehenden Diskussionen werden dann kollaborativ gemeinsame Lösungen beispielsweise in Workshops erarbeitet. Zu den verwendeten Methoden gehören daher neben ausführlicher Recherche und leitfadengestützten Interwiews auch verschiedene Arten der Modellierung. Der dabei entstehende Ansatz vereint dabei Ideen des Top-Down mit denen des Bottom-Up Approaches. Die einzelnen Geschäftsmodelle der beteiligten Projektpartner sind beim Aufbau eines Ökosystems ebenso von Bedeutung wie das gesamte Plattformgeschäftsmodell in diesem Ökosystem. Dabei wird darauf abgezielt Erkenntnisse zu gewinnen um Ökosysteme resilient, und in Einklang mit den europäischen Ideen zu gestalten.